

# PRO12MV2Nd 8Ω

**Custom 12" Transducer** 

## **TECHNICAL SPECIFICATIONS**

| Nominal diameter                   | 30    | 0 mm    | 12 in              |
|------------------------------------|-------|---------|--------------------|
| Rated impedance                    |       |         | 8 Ω                |
| Minimum impedance                  |       |         | 6,8 Ω              |
| Power capacity 1                   |       | 35      | 0 W <sub>AES</sub> |
| Program power <sup>2</sup>         |       |         | 700 W              |
| Sensitivity                        | 99 dB | 1W / 1r | n @ Z <sub>N</sub> |
| Frequency range                    |       | 55 - 6  | .000 Hz            |
| Voice coil diameter                | 63    | ,5 mm   | 2,5 in             |
| BI factor                          |       | 1       | 5,7 N/A            |
| Moving mass                        |       | 0       | ,050 kg            |
| Voice coil length                  |       |         | 15 mm              |
| Air gap height                     |       |         | 7 mm               |
| X <sub>damage</sub> (peak to peak) |       |         | 26 mm              |



### THIELE-SMALL PARAMETERS<sup>3</sup>

| Resonant frequency, f <sub>s</sub>                         | 50 Hz               |
|------------------------------------------------------------|---------------------|
| D.C. Voice coil resistance, R <sub>e</sub>                 | 5,0 Ω               |
| Mechanical Quality Factor, Q <sub>ms</sub>                 | 4,1                 |
| Electrical Quality Factor, Q <sub>es</sub>                 | 0,32                |
| Total Quality Factor, Qts                                  | 0,29                |
| Equivalent Air Volume to C <sub>ms</sub> , V <sub>as</sub> | 87 I                |
| Mechanical Compliance, C <sub>ms</sub>                     | 205 μm / N          |
| Mechanical Resistance, R <sub>ms</sub>                     | 3,7 kg / s          |
| Efficiency, η <sub>0</sub>                                 | 3,2 %               |
| Effective Surface Area, S <sub>d</sub>                     | $0,055 \text{ m}^2$ |
| Maximum Displacement, X <sub>max</sub> <sup>4</sup>        | 6 mm                |
| Displacement Volume, V <sub>d</sub>                        | $330 \; cm^3$       |
| Voice Coil Inductance, Le                                  | 0,4 mH              |

### **MATERIALS**

| Aluminum    |
|-------------|
| Glass fiber |
| Polycotton  |
| Neodymium   |
| Paper       |
| Steel       |
|             |

### **MOUNTING INFORMATION**

| Overall diameter        | 310 mm | 12,2 ir |
|-------------------------|--------|---------|
| Bolt circle diameter    | 292 mm | 11,5 ir |
| Baffle cutout diameter: |        |         |
| - Front mount           | 280 mm | 11,0 ir |
| Depth                   | 125 mm | 4,9 ir  |
| Net weight              | 3,0 kg | 6,6 lb  |
| Shipping weight         | 3,7 kg | 8,1 lb  |



Note: On axis frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m

#### Notes

This datasheet is done with the measurement of a laboratory prototype. Small differences may appear when thw driver is transferred to the production line and manufactured in big quantities.

<sup>&</sup>lt;sup>1</sup> The power capaticty is determined according to AES2-1984 (r2003) standard.

<sup>&</sup>lt;sup>2</sup> Program power is defined as power capacity + 3 dB.

<sup>&</sup>lt;sup>3</sup> T-S parameters are measured after an exercise period using a preconditioning power test. The measurements are carried out with a velocity-current laser transducer and will reflect the long term parameters (once the loudspeaker has been working for a short period of time).

 $<sup>^4</sup>$  The X<sub>max</sub> is calculated as (L<sub>vc</sub> - H<sub>ag</sub>)/2 + (H<sub>ag</sub>/3,5), where L<sub>vc</sub> is the voice coil length and H<sub>ag</sub> is the air gap height.